If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2+6x-5=0
a = 14; b = 6; c = -5;
Δ = b2-4ac
Δ = 62-4·14·(-5)
Δ = 316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{316}=\sqrt{4*79}=\sqrt{4}*\sqrt{79}=2\sqrt{79}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{79}}{2*14}=\frac{-6-2\sqrt{79}}{28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{79}}{2*14}=\frac{-6+2\sqrt{79}}{28} $
| 8x-10=14;x=3 | | 7-y=-3y+6 | | 1+4x=11+2x | | 7(2x-1)=14x+7 | | -112+13x=-4x+61 | | 10=4b+2 | | 5(0.75x-4)=2x-0.5(10-x) | | (-6)-2p=8 | | |3x+7|=|3x+11|. | | 7n-3=8n-5 | | 4x+5x-7=42 | | 2n+7=4n=-13 | | 5x/8=24 | | -10+2d=-4 | | |-3x+2|=5 | | -3(y-1)+5=y+5.5 | | 65=b-28 | | 2x+21=64-3 | | 10x+29=-2x-7 | | 0,5x+x=x | | 1=-(1-8)-8(n-7) | | -30+3x=3x-6(x+2) | | u/6-3.1=22.3 | | 38+4y-6=14y-10-4y | | 5-6n+6-4=1-3n | | 17x-23+9x=55 | | 5-b=-39 | | -8+6q=5q | | 2(x-1)-6=10(1-x+6 | | 8s=4+8 | | 2a-1.75a=42.5 | | 12+7n=2n+8n |